

11th Feb. 2020

Reliable Simulation Technology to Predict Membrane Bioreactor Performance based on the Advanced Fouling Model

Hiroshi Hamada

TORAY Industries, Inc.

- 1. Introduction
- 2. Simulation method
 2.1 Fouling model
 2.2 Fouling parameters acquisition method
 2.3 Simulation program
- 3. Validation of simulation results
- 4. Automatic data analysis system
- 5. Conclusion

1. Introduction

- 2. Simulation method
 2.1 Fouling model
 2.2 Fouling parameters acquisition method
 2.3 Simulation program
- 3. Validation of simulation results
- 4. Automatic data analysis system

5. Conclusion

Features of Membrane Bio Reactor (MBR)

Conventional Method

Advantages of MBR

- Small footprint
- Better water quality

→Suitable for reclamation of wastewater integrated with RO membrane

Example of MBR plants

Appearance of Toray's MBR module

How submerged membrane module works

Toray PVDF flat sheet membrane for MBR

Small pore size, narrow pore size distribution and many pores structure realizes excellent permeability and low fouling.

Importance of MBR filtration flux

*Flux : flow rate per membrane area

Determination of the filtration flux is the most important key-point for total cost.

1. Introduction

- 2. Simulation method
 2.1 Fouling model
 2.2 Fouling parameters acquisition method
 2.3 Simulation program
- 3. Validation of simulation results
- 4. Automatic data analysis system
- 5. Conclusion

Fouling model of simulation

[1] "Reversible cake"

[2] "Irreversible cake" formation impossible to be detached by

TORA

Innovation by Chemistry

Fouling of the membrane is formed into the three types; [1] Reversible cake, [2] Irreversible cake and [3] Pore clogging.

Basic equations of simulation

TORAY Innovation by Chemistry

1. Introduction

- 2. Simulation method
 2.1 Fouling model
 2.2 Fouling parameters acquisition method
 2.3 Simulation program
- 3. Validation of simulation results
- 4. Automatic data analysis system
- 5. Conclusion

Fouling parameters acquisition method

Test example 10 20 Filtration resistance Filtration resistance 8 Relaxation Sludge sample exchange $[\times 10^{10} \text{ m}^{-1}]$ 15 [× 10¹⁰ m⁻¹] 6 10 4 5 2 Cake detachment coefficient **λ: Pore clogging rate co**efficient 0 0 600 400 500 1000 1500 200 0 0 Time [s] Time [s] <u>Test apparatus</u> Stirrer Sludge Pressure (50 mL) Effluent **Wastewater** sensor Membrane **MBR** PC **Metering pump** The fouling parameters are obtained through the analysis of filtration test results.

1. Introduction

2. Simulation method

2.1 Fouling model2.2 Fouling parameters acquisition method2.3 Simulation program

3. Validation of simulation results

4. Automatic data analysis system

5. Conclusion

Simulation program

Input contents

- •Sludge characteristics
- Fouling parameters
- ex. $\boldsymbol{\gamma}$: Detachment coefficient of cake
 - $\lambda\,$: Rate coefficient of pore clogging
- Sludge temp. MLSS

Operation conditions

•Flux •Aeration rate •Relaxation time •Maximum pressure P_{max}

Module specifications

- 1. Introduction
- 2. Simulation method
 2.1 Fouling model
 2.2 Fouling parameters acquisition method
 2.3 Simulation program

3. Validation of simulation results

4. Automatic data analysis system

5. Conclusion

Raw water type : Sewage (25 - 30° C) Flux : 0.60 m³/m²/d

The simulation results were very close to the actual results of MBR plants.

TORAY Innovation by Chemistry

<u>Case 2</u>

Raw water type : Sewage (22 - 28° C) Flux : 0.60 m³/m²/d

The performance of the actual MBR plants could be estimated with simulation even when sludge characteristic change occurred.

Verification of MBR simulation results

The optimal flux can be calculated by the simulation technology.

- 1. Introduction
- 2. Simulation method
 2.1 Fouling model
 2.2 Fouling parameters acquisition method
 2.3 Simulation program
- 3. Validation of simulation results
- 4. Automatic data analysis system
- 5. Conclusion

Automatic data analysis system (ICT)

Operation of MBR plant can be supported by estimation of CIP timing with simulation.

Estimation of CIP timing

Trouble analysis result			
Trouble Date	Trouble con	Trouble Analysis: Indication of trouble occurrence, cause and countermeasure	
2020/01/31 11:00:00	There is a possibility that DO of sludge is high.		
Operation estimation result			
Before CIP date	2020/01/01	Operation estimation: Indication of differential pressure increase	
Period until next CIP	106		
Estimated date of next CIP	2020/04/16	curve and CIP timing.	

This system enables estimation of CIP timing and trouble analysis.

- The practical quantitative simulation technology to predict MBR TMP behavior was developed utilizing the original fouling models with fouling parameters.
- The simulation results were very close to the actual results of MBR plants.
- This simulation technology would be very useful for the optimal design and operation conditions of MBR process to minimize the total cost.
- The combination of the simulation technology and ICT greatly supports MBR operation by estimation of CIP timing.

Thank you for your attention.

